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Universal %matrix of reductive Lie algebras and quantum 
integrable systems from its colour representation 

A Kundut and P Truini$$ 
t Physikalisches Institit der Univenit%t Bonn, Nussailee 12,53115 Bonn, Germany 
$ Dipartimento di Fisica, Univenita di Genova e I" v. Dodecaneso. 33, 16146 Genova, 
Italy 

Received 3 January 1995 

Abstract. The universal %matrix intemvining between the coproduct s m c t w s  related to 
the universal deformations of reductive Lie algebras has been found in an explicit form using 
twisting. A possible colour representation of this 72-matrix and its application to the integrable 
systems are shown using the example of a deformed gl (n)  algebra. 

Introduction 
The universal R-matrix is an abstraction of the quantum R-matrix used in the theory of 
integrable models. In the study of Hopf algebras it becomes an object of its own interest 
and plays a central role in the definition of quasitriangularity [l]. The explicit construction 
of the universal R-matrix is a dficult task in general, but following the prescription given 
by Drinfeld [2] such an object has been found for deformations of semisimple [3-51 as well 
as Affine [6] Lie algebras. In [6,71 the uniqueness of such solutions within the given ansatz 
has also been shown. In the recent past a multiparameter deformation of all reductive Lie 
algebras has been formulated [SI with the property of universality in a certain class. Our 
first goal is to build a universal 'R-matrix for this deformation and show that it is indeed 
a quasitriangular Hopf algebra. In order to do so we exploit the twisting method [9] for 
introducing new parameters as well as for making the transition to the reductive case. The 
physical motivation behind this construction is to go back to the theory of integrable models 
again and use such an R-matrix for building the associated quantum R-matrix and Lax oper- 
ators with spectral as well as colour parameters. The colour parameters are provided by the 
eigenvalues of the central generators of the reductive Lie algebra in a given representation, 
whereas the spectral parameters may be introduced using a suitable Yang-Baxterization 
scheme. We underline the full generality of our construction. Beside its applicability, in 
principle, to simple Lie algebras of any type and to their semisimple and reductive gen- 
eralizations, it includes hough the representations of the universal R-matrix an infinite 
variety of cases. In fact, in the application to the theory of quantum integrable systems 
we may consider different finite-dimensional representations of the 'R-matrix yielding the 
corresponding braid-group representations (BGR), coloured BGR along with the related L* 
matrices used in the Faddeev-Reshetikhin-Takhtajan algebra (FRT) [lo]. Moreover, when- 
ever it is possible to formulate a suitable Yang-Baxterization scheme for the FRT algebra 
we are able to construct genuine spectral-parameter-dependent Lax operators and quantum 
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R-matrices, thus generating new classes of quantum integrable models, beside a generaliza- 
tion of the known Toda field models on lattice. This project has been successfully carried 
through for gl(n + 1) and the result is reported in this paper, which is organized as follows. 
In section 1 we construct the universal R-matrix for the deformations of all reductive Lie 
algebras, based on the Hopf algebra introduced in [8] which is universal within a certain 
class; the result of section 1 is to show that such a Hopf algebra is (pseudo [ 11 or essentially 
[ l l ] )  quasitriangular. Starting from section 2 we specialize to the case gl(n+ 1 ) .  In section 
2 we construct the coloured braid-group representations (CBGR) and coloured Faddeev- 
Reshetikhin-Takhtajan algebra ("r). In section 3 we introduce spectral parameters using 
a Yang-Baxterization scheme and build spectral-parameter-dependent quantum R-matrices 
and corresponding Lax operators. The applications to integrable models are shown in sec- 
tion 4, where particular attention in paid to the generalization of the well known quantum 
Toda field model on lattice. Section 5 is the concluding section. An appendix shows how 
the explicit form of the universal Rmaeix  changes for a different ordering. 

A K d u  and P Tmini 

1. Construction of the universal R-matrix 

Let g be a reductive Lie algebra of rank N .  Namely g is the direct sum of, say, M Ample 
Lie algebras plus an Abelian centre. HI, Hz, . . . , HN is the basis of the Cartan algebra of 
which Hi(l < i < N I )  span the semisimple part and the remaining N - N I  number of 
H,, ( N I  e a g N )  belong to the centre of the algebra. Let ak be vectors with N components 
ark, such that a , ~  = 0 for all k and ( N I  c a < N ) ,  while aij = 2(ui . aj)/(ui . ai) with 
(I  Q i, j Q N I )  are the entries ofthe Caxtan matrix related to the semisimple part. Let X: 
be generators associated to the simple roots ai. It is established that [8] for such algebras 
the universal deformation U,(g) can be defined so that each simple component remains the 
same as that of the standard one-parameter quantization with relations 

and f(H)X$ = X : f ( H  i ai) plus the Sen6 relations 

(1.2) 

with n = 1 - q j  and the notation qii = ekr(rl(cliec), where (1 < p ( i )  < M) counts the 
number of simple components. Since p is constant on each simple component, we may 
also use the notation qp = ehps). The remaining deformation parameters on the other hand, 
can be relegated to the coalgebra structure defining the corresponding coproducts as 

A(X') = X: 0 AT + (A:)-' Q Xi' (1 .3)  

where A:, containing the parameters Vi,, fir (h = - td ,  has the form 
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The antipode (S) and co-unit ( e )  are given by 

(1.6) 
4 * S(Xf) = -qiilxi S(Hi) = -Hi and €(X') = €(Hi )  = 0. 

This defines the universal deformation as a Hopf algebra. 
Our aim here is to find a universal %matrix (R is in a completion of U,(g)@U,(g) 111) 

corresponding to the above Hopf algebra, which would intertwine between the coproduct 
A (equations (1.3H1.5)) and its permuted form A = C A  as 

RA(a) = i\(a)R VU E U,@) (1.7) 

and satisfy the properties 

(A @ OR = RURB O @ A ) R  = R13R12. (1.8) 

Such an 'E would naturally endow the above Hopf algebra with quasitriangularity. 

Following the argument of [ 3 6 ]  we first construct the universal 'E-matrix for the case 
iik = vi, = 0, i.e. for the semisimple but untwisted deformed Lie algebra only depending 
on the deformation parameters qp (1 < p < M). Denoting it by '%, we have 

% = i K  (1.9) 

where K is expressed in terms of the Cartan generators only: 

(ai . ai) (aj . aj) . . 
2 (1.10) 

with dij = (d-')ij. where djj = (ai .aj) is the symmetrized Cartan matrix. k is then given 
in a factorized form as 

M 
ri =,n(ri@)) with ' I?@) n (E?)) (1.11) 

p=1 FA: 

where A: is the set of all positive roots belonging to the pth simple component with the 
prescribed normal ordering [6]. We have, in tun, 

(1.12) if) = expqT; (a;'(qp - q;%, 8 e-,,)) 

where exp, is the q-exponential function exp,(x) = & with (n)p ._ .- e q-l and ay 
is defined by the commutation relation among the following elements of the q-deformed 
Cartan-Weyl basis [6]: 

(1.13~) 

In the above expression (1.13a), if the index y corresponds to the non-simple root ay = 
for certain simple roots ai, then h, = 

ai 
hi and 

(1.136) 

(1.13~) 
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The '&(qii)-matrix thus obtained complies with the coproduct of the form (1.3) and 
(1.4), where the A: operators contain only qii as deforming parameters: 

%&(a) = &(a)% a E U&) (1.14) 

where 

I -a 
Ao(Xf) = Xi' 8 qif f qii ' 8 Xf . (1.15) 

Next we include the remaining parameters t i j  and vi, to obtain R(qii, t i j .  ui.) by 
implementing the twisting transformation [9] and suitably choosing the twisting operators 
for the reductive case. 

We thus obtain the following universal R-matrix associated to the universal deformation 
of any reductive Lie algebra: 

R(qii, tij.  vim) G - l ( u i u ) ~ ' ( f i j ) & , ( q i i ) ~ l ( ~ i j ) ~ - l ( ~ ~ u )  (1.16) 

where &, is given in explicit form through (1.9H1.12) and the twisting operator 6 is given 
by 

(a" = ( a - ' ) j j ) .  (1.17) 

Note that the property 4, - 812, which is essential for constructing a consistent 72.- 
matrix through (1.16), is satisfied due to the antisymmetry of tk, and irrespective of the 
fact that u j .  is not antisymmetric (recall that { v j , }  may have ( N  - N I )  x N I  number of 
independent elements). For showing that the operator (1.17) may be taken as a twisting 
operator, following Reshetikhin 191 6 has to also satisfy 

-1 - - 

(A 8 06 = G&z ~ (I 8 A)G 6 3 d l 2  (1.18) 

along with 

612613623 = &3~113812 (1.19) 

which, however, can be checked easily. 

We may see now that the coproduct is changed under such twisting as 

yielding, in particular, 

(1.20) 
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and A(&) = Ao(Hj) and this coincides exactly with (1.3X1.5) with all non-trivial 
parameters qji, til and vi,; 

Consequently, the universal R-mauix thus obtained has the properties (1.7) and (1.8) and 
thisconcludes the proof that the algebra introduced in [8] is (pseudo [ 11) quasitriangular. The 
total number ofindependentparameters contained in Ris M + $ N I ( N ~ - I ) + N ~ ( N - N ~ )  for 
a reductive Lie algebra of rank N with M simple components plus a ( N  - N+dmensional 
centre. 

It may be worthwhile to note here that the explicit form of the universal %matrix can 
be given in a slightly different form by inverting the ordering of K and k in (1.9). This 
yields 

R =  R K  = KR' (1.2%) 

where 

M 
I? = n n exp,;;(a;'(qp - qp -1 )(ey - B (1.22b) 

P = l  ycA$ 

with 

Z, = ey q? and P-, = q p  -h, e-,. (1.23) 

The proof of this result is given in the appendix. 
It is worth noticing that the algebraic relations remain unchanged under the rescaling 

(1.23) of the generators. This fact should be remembered in considering representations of 
the R-matrix, since representation theory only involves the algebraic part of the Hopf 
structure. The rescaling becomes trivial when representing the R-matrix as a finite- 
dimensional matrix, hence the relative order of K and k is such cases becomes irrelevant. 

2. Colour representations 

A universal %matrix E U,(g) B U , ( g )  (to be rigorous we should say that R is in a 
completion of U,(g) B U&)) related to the universal deformation of any reductive Lie 
algebra has been constructed in the previous section. Specializing this general form (1.16) 
to a particular Lie algebra, which will be reflected in the corresponding choice of root 
systems, form of the Cartan matrix ajj aid normal ordering in A+, one can derive the 
universal R-matrix related to Lie algebras of A ,  B ,  C, D ,  G etc types together with their 
semisimple as well as reductive generalizations. The finitedimensional representations of 
these R-matrices yields the corresponding braid-group representations (BGR), colour BGR 
along with the related L" matrices used in the Faddeev-Reshetihin-Tzkhtajan algebra [lo]. 
A suitable Yang-Baxterization scheme for the FRT algebra related to these Lie algebras, 
allows us to construct genuine spectral-parameter-dependent Lax operators and quantum 
R-matrices generating thus new classes of quantum integrable models. 

We would like to demonstrate this promising scheme using the example of the 
multiparameter deformed reductive U,(gl(n + 1)) algebra. It is straightforward to see 
that in this case the Canan matrix 

a . . -2&. -&.  
t j  - t j  r , + ~  - Jij-1 
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would correspond to sZ(n + 1) with H;, (i = 1,. . . , n) constituting the Cartan subalgebra 
and Xe, (i 1, . . . , n) being generators corresponding to simple roots. Moreover, in this 
case we have M = 1 giving qii = eh@J(n#.ui) = ea.) = q2 and also N I  = n, N = n + 1. 
Therefore for such a deformed algebra we have a single central element H, = 2 and the 
related deforming parameters reduce to only u.j = uj ,  ( j  = 1, . . . , n). 

As a result we get the universal R-ma& for Uq(gl(n + 1)) as 

A Kundu and P Truini 

R'(4, 4;j9 ~ j )  = B - ' ( ~ j ) ~ ' ( 4 i j ) K ( q ) R ' ' ( q ) ~ ' ( ~ ~ j ) ~ - ' ( ~ j )  (2.1) 

where 

where A = q - q-', ay as defined in [61 and 4, correspond to the roots y = a, 
(for i < j and as simple) which will be denoted below as Z;j. Note that we use the 
generators Z i Y  as in (1.23), since we have adopted here the ordering (1.22~) for defining 
our 7Z+-matrix. 

For the other operators in (2.1) likewise we get 

Similarly one may obtain also another %matrix solution as 

"r+ -I  obtained from and due to F;' = 7 1 2 ,  G;' = 812 and K21-l = Kl2-I in the present 
case with symmetric a;j. 

It is interesting to obtain the universal R-matrix related to Uq(gZ(2)) from our general 
solution (2.1) and (2.2). In this particular case with n = 1 the parameters @;j vanish giving 
F($;j) = 1 and 

R(q, VI)  = G-'~ul)RoB-lh) (2.1') 

B(ul )  = exp(-+ul(ZBH - HBZ)) 

Here 
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and 72, represents the well known Uq(sZ(2, C)) case [1,32]: 

4095 

", G = K R  

Here 91 := q(Uu) = q 2  and we have connected the standard notations exp,(x) = 

(see e.g. [32]) using 
" D  

(see e.g. [SI) and [n], = E,,* with (n), := 5 ,z-,-z 
the identity 

[n],! = (n),-r! q- . ' 

Such an R-matrix for Uq(g1(2)) has also been constructed recently in [12]. Note that 
in the finite-diiensional fundamental representation n of U,(gZ(n + 1)) the '@-matrices 
E U,(gl(n + 1)) 8 U,(gZ(n + 1)) may be reduced to qualitatively different objects [13] 
yielding BGR R* or the Li matrices involved in the FRT algebra. In particular, one obtains 

(2.8) * - L +  400%-  12 

(IT 0 = R:, (2.9) 

where the bold face indices denote the infinitedimensional space U,(g) and the ordinary 
indices its finitedimensional fundamental representation. We intend to find in an explicit 
form the representation (2.8) and (2.9) for the universal R-matrices (2.1) and (2.6) using the 
basis matrices Ejj with matrix elements (Eij)tj = &8j; for the fundamental representation 
of gl(n + 1) as 

n(Hi)  = Eii - Ei+ii+i 

R(X:) Ei;+i n ( X ; )  = Ei+ii (2.11) 
R(X$ Eij+i a(X,;) = Ej+li .  (2.12) 

(2.10) 

Using the matrix products E;j Eki = SjwEiz and the obvious relation 

a(q:x') 1 + Eii(q$' - 1) + Ei+ii+i(q:' - 1) 

it can easily be checked ha t  the defining relation (1.13~) between the two sets of generators 
Z and X reduces for this particular representation simply to n(Z*+i) = q"n(XF)  yielding 
~ ( Z j j )  = E;j+lq-(--'+') (j > i) for the generator associated to the non-simple positive root 
y = rUk and n(Zji) = Ej+l;q(--;+') for - y .  Therefore following [13], which is based 
on exploiting the above stated product $e of E;, matrices and an identity involving ai?, 
one finds from the universal Rw = KR+-matrix corresponding to U,(sl(n + 1)) without 
twisting: 

(n 0 0174,' = L E  
= C o n E k ~ + A C ~ i ( E i j + l ~ j i )  (2.13) 

k i j  



4096 

ix 3 
where we have defined f& = q("=' "-"..' d) fork = 1, . . . , n, while wnil = q-Z-1 n i l .  

Now invoking a similar representation (n '81) for the twisting operator F we get 

A Kmdu and P Truini 

(2.14) 

) (n '8 vG1 FL1 = exp - x ( ' # k j  - ' # k - l j ) E k k q  ( j = 1  " k=l n+l 
ll+l 

= G E k x  
k=l 

where 

G = e-Eyd(~kl-h-ll)w 

by extending the range of parameters with trivial inclusion q40j = = 0. However, it 
is remarkable that with respect to the reductive-type twisting operator G some non-trivial 
aspect may arise, since now we can consider Z to have different eigenvalues in different 
spaces, i.e. (n '802 = AI '81, while (I@n)Z = PI@ I. Such pameters A, /L may be taken 
as the colour parameters and the corresponding representations (RA Q I), (I '8 nJ as the 
colour representations [14]. This gives an interesting possibility [15] of constructing colour 
FRT relations and the CBGR starting from the universal R-matrix. Consequently from the 
general form of R+ (2.1) , using the representation (2.10)-(2.12), the colour representation 
( n ~  @ I)Z = AI @ I and the identity 1131 

valid for sl(n + 1) we can derive after some algebra the expression 

where 

(2.16) 

The appearance of the colour parameter A in the above representation should be noted. Now 
collecting different constituting pieces (2.13)-(2.17) as 

and using the property E ; j &  = 8j& we finally obtain the general form of L+-mauices 
corresponding to U,(gl(n + 1)) as 
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and similarly for 

= G ; ~  ( A ) F ; ~ ~  L;;F;~G; (A) 
Jl+l 

= c(0.J;' w: @)T,')Ekk - A (Wj+1 (A) q+l) (Ej+~i&j) (0.J:' Wi (A) T i )  (2.19) 
k=l i < j  

where we have set &j = .2j.qG-i+1) Note again that due to the property u q i  = G: = F12 
and similarly UG;' = G$= GIZ the twisting parts are the same for both L:, and LE . 

Next we intend to construct a general colour BGR solution related to the fundamental 
representation of gl (n+l )  through the kep ( x ~ @ i r , ) R  of the universal R-matrix (2.1) and 
(2.6). Note that we have already obtained a 'one-space' representation (2.18) and (2.19) and 
therefore we are going to use this result to obtain the required 'two-space, representation. 
Again we start from the core solution 72.:; = Z,:: and reduce it further to 

R Z  = ( I  8 x)L? 

(2.20) 

(2.21) 

which correspond to the BGR related to sZ(n + 1) [13]. Following similar reasoning and 
using (2.10) the twisting operator can also be reduced as 

(2.22) 

with 

@jj  = e-(4k,4u-,-&k-1,+&k -11-1 1 

where the obvious property @kj = should be noticed. The operator Glz(A) under such 
a mapping, however, exhibits a more interesting form with two colour parameters A and p 
yielding 

where 

(2.23) 
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with the pmpertygdh, p)  = gz'(p, A). Again collecting different pieces (2.20)-(2.24) we 

A Kundu and P Truini 

finally construct the coloured BGR (CBGR) as 

-F @Pk;.'&EM @ E j j ) f A  gjjgjiE;j @ Ej; . (2.25) 
i c j ( j c i )  1 

It is remakable that the colour parameters introduced by (2.24) m actually in the factorized 
form as 

which induce n W y  in CBGR (2.U) a structure factorized in colour degrees of freedom. 
Note that this fact was conjectured in [la, which also helped to obtain a CBGR solution. 
Here we are able to substantiate the appearance of such factorized form as a consequence 
of the colour irrep of the universal R-manix. Rewriting (2.25) in the explicit factorized 
form 

we notice that it coincides (apart from a normalition factor) with the solution found in 
[16] for the choice of their arbitmy function as $)(A) = $)(A) = &-'(A). Observe that 
due to &,j = &+lj = 0, the twisting factors @;j can appear only starting from gZ(3). while 
the colour factors gjj may be non-trivial for any value of n. 

Having constructed the CBGR (2.25) and the related L* (2.18) and (2.19) for gl(n + 1) 
we can now formulate the corresponding colour FRT algebra given by the relations 

R&(L PW:(W$OL) = L?(PK:(VR$-, P )  

R:,(A, IL)L:(A.)L;OL) = L ; ( P ) L $ ) R ~ . ,  P )  
R&h / .OLF(W~(P)  = ~ ~ ( P ) L F ( U R & ,  P )  

(2.28) 
(2.29) 
(2.30) 
(2.31) 

where L1 = L13 @ I ,  Lz = I @ Lu. These relations may be obtained by taking colour 
representation (xh @ x, @I) of the universal Yang-Baxter equations satisfied by ?Z* [17]. 
It may be checked that the CFRT algebra (2.28)-(2.31) using the explicit forms (2.18) and 

R&L PW:(W:(P) = L:(PW:@)R&L P)  

(2.19) and (2.25) gives back the universally deformed algebra (1.1) and (1.2) related to 
gun + 1) . 
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3. Yang-Baxterization and construction of quantum integrable models 

Finally, here we aim to construct a generalized quantum integrable system related to the 
universal deformation of the enveloping algebra of gl (n + 1). This requires the construction 
of spectral-parameter-dependent Lax operators of the models as well as the corresponding 
quantum R-matrix depending again on spectral parameters, such that they would satisfy 
the quantum Yang-Baxter equation [NI. We intend to build such operators by using the 
coloured objects L*(h) and R*(h, p) obtained in the previous section as building blocks 
and introducing the spectral parameters by Yang-Baxterization of the C ~ T  algebra in the 
form [ 19,201 

for the quantum R-matrix and 

 LE,^) = W u  +rl~&) (3.2) 

for the Lax operator. Here 5 and are spectral parameters and R;(h, p) and L&(A) are 
the solutions of the "r algebra (2.28H2.31). Note that such a programme was carried 
out in 1151 for the particular case gl(2). Now it can he shown that for (3.1) and (3.2) to 
become a solution of the quantum Yang-Baxter equation 

Riz - I  A. P L I E ,  WZ(T = Lz(v,  p)Li(E', WIZ (: -, .L /I ) (: ) (3.3) 

where R$(h, p) and L&(h) apart from being solutions of the "C algebra must also satisfy 
the relation 

PIZ@. P)IL;(h)L:(LL) + L 3 W & ) I  = [ L : ( P ) m )  + ~ ; ( ~ ~ ~ ~ ( ~ ) l P l z ( L  f i )  
(3.4) 

where 

RL(L U )  - R & L  /I) = S z ( L  LL) = G r i ( L  PL)P~ZGL'(L P). (3.5) 

Here the operator P&, p) may be considered as the coloured permutation operator, since 
Plz exhibits the permutation property P& @ b)  = (b @ a)Plz, whereas the relation (3.5) 
itself is like the coloured Hecke condition. However, while in the colourless case the 
relation (3.4) is trivial due to the permutation property of P~z, it requires to be established 
in our coloured case. Fortunately, we are able to prove the following lemma for gl(n + 1). 
which in turn readily shows the validity of (3.4) in this case. 

Lemma. In the general gl(n+ 1) case the coloured permutation operator exhibits the property 
of permutation with change of colour as 

(3.6) 

To prove these equalities we use the explicit forms of L:(h) as found in (2.18) and (2.19) 
and the structure of P d h ,  p) as in (3.5). remembering the permutation property of Plz 
valid in the colour-free case. This gives, in particular, for the form 

M.l, LL)L:(~)L:(P) = L ~ ( ! & ( W i z ( L  CL). 

L ~ A )  = G & ) ( L ~ ) G ~ ~ ( A )  
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the relation 

A Kundu and P Tm'ni 

PiAA, p)L;(A) = E&L p)Piz(A, p) (3.7)' 

where LT(A, p )  = GG'(A)(L&, p))GG'(A) and LG(A, p) differes from L; by only a 
factor J ( A ,  p )  = e*x!< "i before the term Ej+liB;j-. 

A similar relation holds also for L f ( p ) ,  where LT(A, p)  = GZ(p)(L;(A, p) )GZ(p)  
and LT3(A, p) may be obtained from LT with the appearance of an extra factor J-'(A, p). 
However, again using the interesting property of interchanging colours as 

Wk@)Eji(ij)w;(P) JT1(A, pL)wk(p);ji(ij)@(A) (3.8) 

one can cancel the extra factors with J*'(A, p )  appearing in ET@, p) as well as interchange 
the colours recovering 

QL, P)E:(A, = L%)LT(A). (3.9) 

Coupling the relations like (3.7) with (3.9) we finally obtain 

piz(L IL)L;(A)L~(w) = -G(/L)L?(A)PIZ(~. W) . (3.10) 

The other relation of the lemma is similarly proven. 

Therefore the Yang-Baxterization (3.1) and (3.2) goes through for the coloured FRT 
algebra solutions (2.18) and (2.19) and (2.25) related to the universal deformation of 
gl(n + 1). As a consequence the spectral-parameter-dependent quantum R-matrix (3.1) 
is given in the explicit form finally as 

+sincrxg;j(A,p)gji(A,p)(E;j @ E j i  + E j i @ E i j )  (3.11) 
i < j  

where the matrix is normalized by a constant and the notations 

.- 
q =e" q = eia 

have been introduced. It is remarkable that interpreting the colour parameters A, p also as the 
spectral parameters one geb' from (3.11) an R-matrix with two sets of spectral parameters, 
while considering further the choice A = and p = ,C, equation (3.1 1) becomes a quantum 
R-matrix with non-additive dependence on spectral parameters. Recall that in standard 
quantum integrable models [21,22] the known quantum R-matrices exhibit dependence on 
spectral parameters only additively, i.e. as R(A-p). Therefore the non-additive dependence 
obtained here, which for gl(2) shows dependence on (A - p) and (A + p )  only 1151 might 
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be of significant interest in the context of quantum integrable systems. On the other hand 
the corresponding Lax operator derived from (3.2) has the form 

+ A CIF(O~ Wi @)Z)(Eij+l;ji)(Wj+1 (A)Tj+l) 
icj 

- F1Wj+1 (x)?;+1)(Ej+,iaij)(o;'Wi@)Ti)). (3.12) 

Note that again considering the colour parapeters as the spectral parameters and choosing 
the degenerate case 1 = we can get a (n + 1) x ( E  + 1)-Lax operator of a generalized 
integrable model. Though the structure of (3.12) is apparently complicated, its construction 
clearly shows that it has a factorized form 

L(C7 1) G ~ ' ( A ) ~ ~ ' ( ~ i j ) ~ ( C ) G ~ ' ( A ) ~ ~ ' ( ~ ~ j )  

where LO) may be related to the Toda field models [23]. Therefore the integrable model 
represented by (3.11) and (3.12) may be considered as a coloured as well as twisted 
generalization of the exact lattice version of the Toda field model. This and other applications 
to integrable models are shown in the next section. 

4. Application to integrable models 

Let us show first that our construction of the quantum R-matrix (3.11), Lax operator (3.12) 
and also universal E-matrix (2.1) recover many earlier results at different particular limits. 
For example, at n = 1 and in the spectral-parameter-independent case the universal 'R- 
matrix (2.1), as reduced to (2.1'), recovers the R-matrix of Burdik eta1 1141 for u1 = ia, 
while for ut as an arbitmy parameter we get the recent construction of Jagannathan et 
ai [12]. The spectral-parameter-dependent R-matrix (3.11), on the other hand, can be 
considered as a coloured generalization of the PerkSchultz model [24]. We observe that 
at h(1) independent of the colour parameters and with the special choice fk(1) = 1 and 
h ( p )  = Xk one recovers the PerkSchultz model 

n+l "+I 

k=1 x> j 
R(U) = zX:Sin(U +Or)Elx 8 Ekk+~SinU(@.x jX~Ej j  8 Ekk  @px;:'xfEkk 8 E j j )  

(4.1) 
icj 

thus showing anunexpected connection between an integrable statistical model, constructed 
with the demand of a 'particle conserving' ice rule and our matrix derived from the 
universal %matrix of reductive Lie algebra constructed through twisting transformation. 
The additional parameters E.! = i l  appearing in the diagonal elements of the Perk-Scshultz 
model can be generated if one starts from a universal 'R-matrix related to non-compact 
groups. In analogy with the exact solution of the multicomponent six-vertex model [25] 
based on [241 it would also be interesting to now solve the more general integrable model 
(3.11) with dependence on the colour parameters. 
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We note further that the R-matrix solution for arbitmy n obtained in [U, 161 by a 
symmetry transformation and the (2 x 2)-L operator constructed through some ansatz 
also follow *om our systematic consuuction starting from the universal 72-matrix of 
U&(n + 1)). In 1151 the L operator was found for the n = 1 case and the R-matrix 
constructed was conjectured to be obtainable from the universal %matrix for arbitrary 
n. This conjecture is proved through our construction and, moreover, we find the colour- 
generalized Lax operator (3.12) for general n obtained again as a representation of the 
universal %matrix. Our construction also explains and justifies some other results of an 
algebraic nature, the occurance of which appeared to be rather mysterious in [15]. 

For possible applications of our construction to integrable systems let us first limit 
ourselves to the fundamental representation and consider the quantum chain model with 
nearest-neighbour interaction. Note that in the untwisted case, i.e. for uj = 0, @ij = 0 and 
for the fundamental models we have L:m(5 = 1) = Pam, where Pam is the permutation 
operator. Therefore one can construct the Hamiltonian HO of the corresponding integrable 
quantum model through a usual procedure [21] as 

a where r = t r T ( f = l )  r '= - ( t rT( t= l ) ) .  
a t  

Ho = r'r-' 

Here T ( f )  = L N ( ~ ) L N - ~ ( ~ ) .  . . L1Q) is the monodromy matrix of the related integrable 
model. This generates 

HO = C ( p L o ' ) m , m t I  
m 

or in the explicit form 

where some constant terms are ignored. Here and in what follows the superscript (m) 
denotes the mth lattice site. Now for finding the extension of the above system with non- 
trivial twisting parameters uj and &j preserving the integrability, we observe that in this 
general case one gets 

1 ( p - p l )  
P1m 1G-1 - h m ( 5  = 1) = G F ~ F ~ P ~ m F i ,  im - (A1Ai 1 

where A, = eiIt.J'J'""Htb"'. Now we may consider two different situations when 

(i) the colour parameter Z(') is independent of the spectral parameter or 
(ii) Z(') is a function of spectral parameter A'. 

In both cases the above described construction goes through almost parallely and in the 
first case we obtain the new Hamiltonian 





(4.8) 
(4.9) 

(4.10) 

,"- 
for k = 1,. . . , n, while o,+l = q-xy-1 d and 

Tk = e-z=1(d4-+Ml)6 Wk@) = ez +x;, .,."ffI+Z(I3;., &-E;* ",)) 

for k = 1, . . . , n, while 

%+I (A) = e $(KZ,wJ ' f i+ZZ- ,  3) . 
It is interesting to note that realizations of the underlying quantized algebra in different 

physical variables, e.g. bosonic, q-bosonic 127-291, or canonical variables would result, in 
principle, in the generation of different kinds of lattice models from (4.7). which would 
be exactly integrable at the quantum level. To demonstrate this we first use the following 
q-bosonic realization [30] of the quantized algebra: 

(4.11) 

and 

X: = AfAt+l Xr = ( [ N ~ ] , ) $ A z  XL = (X:)t (4.12) 

with k = 2,3.. . , n. and 1x1, = e. Here s is an arbitrary parameter and A i ,  Ax are n 
number of q-bosonic operators satisfying the deformed commutation relation 

In this case (4.7) may be considered as the representative Lax operator, of a novel quantum 
integrable multimode q-bosonic model. Indeed, one obsepes that (4.11) transforms the 
sums as 

giving ok = qNL+ for k = 1.2, . . . , n and @,+I = qNn+'-'. Consequently, inserting the 
redization of quantum algebra (4.11) and (4.12) in (4.8H4.10) and taking into account the 
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relation (1.13~) between &j and the generators X:, after some algebra one arrives at (4.7) 
containing 

ti * - - 4  *cN.-S,(W.T.)z I t  (4.14) 

(4.15) t -3 

(4.16) r1j = W j + ~ T j + ~ ( [ N i l F q j A j ) W i T i  

zij = Wj+~Tj+l(A~q-~cm,-mJ)Aj)WiI;: for i c j and t j i  = (ti,)' (4.17) 

with i ,  j = 2.3,. . . , n  + 1 and mj = Cr=2,rgj sgn(j - r ) N ,  ml = 0. Using the 
isomorphism of the algebra some irrelevant factors are absorbed in the above generators to 
make the realization simpler. 

t j l  = WlTl(Ajq 2 [NlI;)Wj+ll;+~ 
I R  

Here and W, operators take the form 

4 = e - ~ - , ( ~ ~ , ~ ~ - ~ , ) ( ~ - N , + , )  (4.18) 

and 

(4.19) 

Note that a similar representation through q-bosons in the case when Tx = 0 = Wx was 
also found in [20]. The present model apart from the q-bosonic creation, annihilation and 
the number operators also contains an 'external' operator 2 and a set of parameters 1, uj 
and & j .  This is an exactly integrable q-bosonic quantum lattice model. 

Between the usual bosons having the standard commutation relations 

and the q-bosons there exists a simple mapping 

which helps to also realize the Lax operator of the q-bosonic model in standard bosons. 
Another interesting model which generalizes the lattice regularized version of the Toda 

field model [23] in a non-trivial way can be constructed again starting from (4.7). For 
this usin the results of [a] we can find a realization of q-bosons in canonical variables 
[U:'"', $ 1  = iSnmSob given by 

with i = 2.3, . . . , n + 1 and k = 1,2, . . . , n + 1, where i& and A are the simple roots and 
fundamental weights of sZ(n + l), respectively, with the relation 

(sf . & )  = Sij  i ,  j = 2,3, . . . , n + 1 . 
"+1 - Here we have assumed = -cia ai and ,& = 0. Now inserting (4.20) in (4.14)- 

(4.19) one obtains the Lax operator in the form (4.7), representing a generalization of the 
well known [23] quantum integrable lattice Toda field model. By rescaling p' + A? 
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and adjusting the parameters one can introduce the lattice constant A. Note that the 
generalization over the known model is achieved here due to the presence of the terms 
T, and W,, which are originated in our model through twisting transformations. They enter 
into the Lax operator in a non-trivial way and apart from the operators Nk also contain the 
'external field' Z('") and the parameters uj. A and +ij with i, j = 1.2, . . . , n. 

To see its explicit form we consider for simplicity the n = 1 case, which corresponds to 
a generalization of the lattice sineGordon model 1311 through the inclusion of non-trivial 

A Kundu and P Tmini 

U, .A, z'": 

where 

g2(u(") = 1 + f m o A  1 2 2  cosa(2dm) + 1). 

It would be an interesting problem to find and investigate the field models corresponding 
to such generalized quantum integrable discrete systems. 

5. Concluding remarks 

We have constructed the universal 72-matrix intertwining between the coproduct structures 
related to the universal deformation of the reductive Lie algebras. Such constructions 
along with establishing the property of quasitriangularity of the associated Hopf algebra 
can also be applied for building the quantum R-matrices as well as the Lax operators of 
different classes of quantum integrable models. This programme is carried out exploiting 
the universal 72-matrix related to gZ(n + 1). The explicit form of the quantum R- 
matrix and the Lax operator depend upon the spectral as well as colour parameters 
apart from a set of additional parameters, introduced through twisting. The integrable 
systems represented by such objects range from statistical models, quantum spin chains 
to the generalization of lattice regularized Toda field theory. This systematic construction 
scheme starts from the universal R-matrix and goes through several intermediate steps 
like formulation of the coloured Faddeev-Reshetikhin-Takhtajan (CFIYT) algebra, coloured 
braid-group, Yang-Baxterization of CFRT etc, which may be considered as important 
byproducts. 

Similar investigation related to other types of Lie algebras would be undoubtadely a 
desirable one. 

Appendix. A note on the explicit form of the universal (untwisted) %matrix 

Here we want to prove that 

R =  RK = K$ (A.1) 

where the relevant quantities are defined in the text. 
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We first consider generators e+m associated to simple roots and calculate 

In fact, 

where we used the fact that in the sum over i only terms with e and i in the same simple 
component may give a non-vanishing contribution and in this case hP(;) = h,(e) goes out 
of the sum leaving a Sje. 

Analogously, 

(-4.3) (I 8 e-t)K = K(qtL % 8 e-,). 

We conclude from (2 )  and (3) that 
(et 8 e-e) K = (et @ 1)(18 e-e) K 

3 -9 
= K @e qtj 8 qtt e-t) 

= K (et q: 8 qih'e-e) 

with ht = T H O  as in the paper. 

as a multiple q-commutator of generators associated to simple roots, hence we can write 
Suppose now er is a generator associated to a non-simple root. Then e, can be expressed 

e, = ci ,._. ;"e!, . . . ei, 
11 ..., " 

where each term in the sum contains the same generators @ut in a different order) e;, , . . . , ein 
associated to simple roots. Moreover, as in the main text, we can introduce the Cartan 
generator associated to the non-simple root h, = hi,. 

We now calculate, using (2), 

(,E ci ,._. ;.e;, . . . ei, 8 1 K = E ci (e;, 8 1) . . . (e;, 8 1)K 
1,...1. 

-h 

I , . . .  r" ) . '  

= K C c i  ,... i , , e i l . . ~ e i n 8 q p  " = K ( e , 8 q i h ' ) .  
1 ,  ... 1. 

By performing the analogue calculation for 1 8 e - ,  we conclude that 

(e ,  8 e-,)K = K(e,q,hy 8 qphve-,). 

From the latter equality the proof of (1) follows easily. 
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